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L50 Letters to the Editor 

Numerical calculation of the energy eigenvalues for a 
local potential 

Abstract. A first-order differential equation, derived from the Schradinger 
equation, is used to outline a numerical method for calculating the energy 
eigenvalues for a local potential. 

I n  a recent letter (Kermode 1971) a numerical method was given for calculating 
the S-state energy eigenvalues for a local potential in the Schrodinger equation. This 
method can also be used to find the energy eigenvalues for higher angular momentum 
states but the range of integration would have to be increased as L,  the angular 
momentum, increases; that is, the integration would have to be taken to a distance R 
such that L(L + l ) / P  is negligible. This is inconvenient and it would be very useful 
if the centrifugal potential could be absorbed into the transformation of the logarithmic 
derivative of the wavefunction uL(r) (Kermode 1971) rather than be included with the 
short-range potential. 

A suitable transformation for higher angular momentum states of the logarithmic 
derivative has recently been found. This leads to a very useful first-order differential 
equation which we now derive. The logarithmic derivative, Y,,~(Y), satisfies the 
Riccati equation 

where ,U = ( -2mE/fi2)112 for the negative energy E, m is the reduced mass and V(Y) 
is measured in units of (length)-2. The  boundary condition for equation (1) is 

The determination of an energy eigenvalue, if one exists, is equivalent to finding 
y(0) = Co. 

a value of p, pB say, such that 

beyond the range R of the short-range potential V(r),  where zB = ipBY and hL(l)(zB) 
is the Riccati-Hankel function of the first kind (Calogero 1967). It is equal to 
z& , (~ ) (z~ ) ,  where h , ( l ) ( ~ ~ )  is the spherical Bessel function of the third kind 
(Abramowitz and Stegun 1965). The  prime denotes differentiation with respect to Y. 

The expression for P , , ~ ( Y )  is not as complicated as it appears; for example 

Po,fi(r) = - P  

P l , U ( Y )  = - P V +  {PY(1+PW1I. (3) 
From the properties of lZL(l)(z), it is found that p , , , , ,  can be obtained fromp,,, by 
using the formula 

It is important to note that p , , , ( ~ )  has no singularities for Y > 0. 
A transformation for Y , , ~  which usefully incorporates the result (2)  is 
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From equations (2) and (5) we see that, at an energy eigenvalue, 

The differential equation for fL,u(r) is 

V(f9 P 
dr 21.c 2 

-- - - -- (1 - cos 2f L,u) + - (1 +cos 2f L,p) + sin 2f L,ppL,u df L , u W  
( 7 )  

with the boundary condition fL,u(0) = 0. 
We point out that for L = 0 the transformation (5) and consequently the differen- 

tial equation (7) are slightly different from those given previously (Kermode 1971 : 
the numerical result given in this letter is the value of pB2 and not pB). However, the 
energy dependence of go@) = f,,,(R) is very similar in shape to the energy dependence 
of fo(R) given in the previous letter; that is, go(0) = nn, where n is the number of 
bound states or energy eigenvalues (apart from the case of a bound state at zero 
energy) and go(p-Lgm) = (m-&).rr, m 2 1, where m- 1 is the number of bound states 
with pB > pBm. It was also found that go(p) ci $.rr + tan-l(0.5) = pn+0*46365, 
wherep is the number of bound states with pB > p, provided that p is not too small 
or too close to a bound state. I n  brief, go(p) is practically a step function with the 
steps occurring at the binding energies. 

A similar result was found for the higher angular momentum states. For a square- 
well potential of depth V o  fm-2 and range a fm,  equation (7)  was integrated 
numerically for various values of p to give gL(p) = fL,fl(R). I t  was found that for a 
potential which has one or more bound states gL(p), like go(p), was practically a step 
function. The values of the binding energies were checked against, and found to 
agree with, the solutions of the equation 

where c( = (Vo-pB2)1/2 andj,(ar) is the Riccati-Bessel function which is regular at 
the origin. The prime denotes differentiation with respect to Y. 

Unlike the case L = 0, there is no simple expression for the horizontal values of 
the steps, However, it was found in practice that the previous expression is almost 
valid, that is, gL(p) = p.rr-t-0.46365 S E ,  where E is a small number (161 < 1). 

As an illustration of the use of the method, we give some of the results of our 
calculations in table 1. These results are for L = 1, a = 1 fm, R = 10 fm and 

Table 1 

P2 0.01 0.2 0.2216 0.2217 0.5 1 .o 
gi(p) 6.5458 6.7260 6.4224 3.7577 3.5972 3.6012 

P= 10.0 20.0 25.0 25.2136 25 * 21 37 30.0 
gi(p) 3.6048 3.6050 3.6051 3,6051 0,4635 0,4635 

V ,  = 40 fm-2. From the numerical solution of the transcendental equation (S), we 
found that this potential has two bound states, one at 0.2218 fm-2 and the other at 
25.2138 fm-2. A fixed step length of 0.004 fm was used for the integration of the 
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differential equation (7). A smaller step length would give the correct answer to 
four decimal places. However, in general a variable step length is preferable since, 
for example, at the distance ?( CI 0.5 fm) when fL,LLB(P) is equal to 7r/2, the slope 
dfLJdr is about 82 fm-2 for the first eigenvalue. We see from table 1 and equation (6) 
that the differential equation (7) enables us to calculate quickly and accurately the 
energy eigenvalues of a given central potential. 
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n- K’p -+ K+,H, process in the two-meson-exchange 
peripheral model 

Abstract. The two-meson-exchange peripheral model has been used to 
explain the observed backward production features of the reaction K - p  -+ K +E - 
in the intermediate energy region. 

In  the past, the data on peripheral processes have been explained by extending 
the argument first given by Chew and Low (1959). Following them, it has been 
assumed that when the singularity corresponding to the exchange of the lowest mass 
particle is not far from the physical region then, in the part of the physical region 
near the pole, the peripheral diagram is dominant. Usually, this means considering 
one-pion-exchange diagrams. Many workers (Chan and Liu 1965, Ebel and James 
1967) have extended the meaning of the word ‘peripheral’ to assume that the one- 
particle-exchange (OPE) diagram, including the baryon-exchange diagrams, would 
dominate the scattering. This is the basis of the OPE model. The single-baryon- 
exchange calculation for the peripheral process 

K - + p - t K + + E -  (1) 
showing backward (small U )  peaking, gives differential cross sections which are 
orders of magnitude large and not sufficiently sharply peaked (Ebel and James 1967). 

Ebel and James (1967) have applied the OPE model to the process (1) with 
absorption corrections. However, their prediction of the energy dependence of the 
total cross section is in violent disagreement with the data. 


